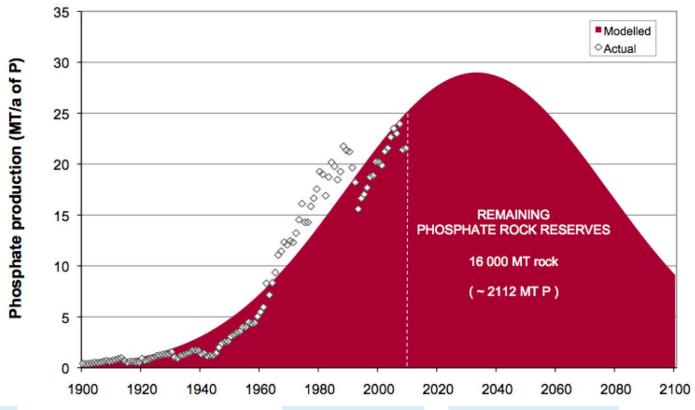


Phosphorus recovery from wastewater: strategies and technologies

Overview of driving forces and challenges

Event / Date Gdansk/ 12.6.2018 Organisation Contact


John Nurminen Foundation Marjukka Porvari

GLOBAL PHOSPHORUS RESERVES?

Source: http://www.mdpi.com/2 071-

1050/3/10/2027/htm

NUTRIENT IMBALANCE IS A GLOBAL PROBLEM

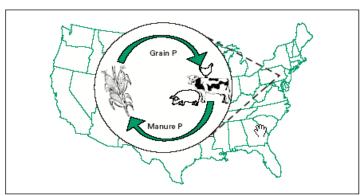


Figure 34-6. Before World War II, nutrient cycling was localized and sustainable within watersheds.

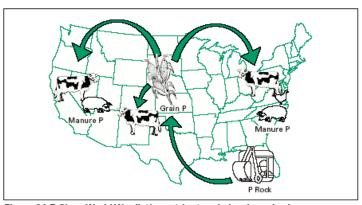
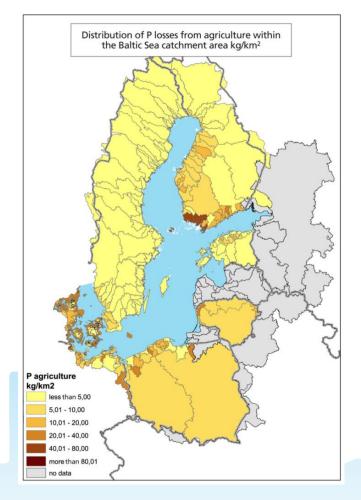



Figure 34-7. Since World War II, the nutrient cycle has been broken on a national level, with P tending to move from areas of grain production to areas of livestock production.

Source:http://www.lpes.org/Lessons/Lesson34/34_4_Phosp horus_Increase.pdf

Source: HELCOM PLC-6

OVERABUNDANCE AND REGIONAL ACCUMULATION OF PHOSPHORUS

PHOSPHORUS USE EFFICIENCY VARIES GREATLY AROUND THE BALTIC SEA

	Outputs	Inpu	rts		_
Tons P	Crop harvest	Fertiliser	Livestock excreta	PUE*	Human excreta
Belarus	36 400	69 400	46 300	0,3	5 400
Denmark	45 400	11 200	55 200	0,7	7 200
Estonia	6 400	3 000	3 800	0,9	1 400
Finland	21 600	12 200	15 600	0,8	6 600
Germany	55 000	19 200	34 100	1	6 500
Latvia	12 700	7 100	5 900	1	2 300
Lithuania	25 300	14 400	12 200	0,9	4 100
Poland	165 100	170 300	154 000	0,5	45 000
Russia	4 500	2 600	16 800	0,2	13 200
Sweden	34 000	10 500	22 700	1	11 800
Total	406 400	319 900	366 600	0,6	103 500

Source: Stockholm University/Baltic Sea Centre. Policy Brief, Nov. 2017

MARKET FORCES ARE NOT YET THERE

WWT SLUDGE IN AGRICULTURE - CHALLENGES

- Heavy metals: e.g. cadmium, chromium, mercury and lead from industry, copper and zinc from households
- Organic compounds such as polybrominated flame retardants and pharmaceuticals coming from households
- Microplastics an emerging issue

 Perception and fears of food industry, farmers and consumers

DIFFERENCES IN REGULATIONS AND RISK PERCEPTIONS OF WWT SLUDGE UTILISATION

Country (substance analyzed)	Cd	Cr	Cu	Hg	Ni	Pb	Zn	
FINLAND (in sludge)	3	300	600	2	100	150	1500	
SWEDEN (in sludge)	2	100	600	2.5	50	100	800	
DENMARK (in sludge)	0.8	100	1000	0.8	30	120	4000	
	10						2500	
	10	900	800	8	200	900	(2000	
GERMANY (in sludge)	(5)*)*	
FIL Directive 96/279 (in al. 1-1)	20.40		1000-	16-	300-	750-	2500-	
EU Directive 86/278 (in sludge)	20-40		1750	25	400	1200	4000	

Source: Project PURE sludge handbook

PHOSPHORUS RECOVERY METHODS

aqueous phase	sewage sludge [SS]	sewage sludge ash [SSA]
REM-NUT® ¹ [2; ion exchange, precipitation]	Gifhorn process ⁷ [4.1; wet-chemical leaching]	AshDec® depollution ¹² [5; thermo-chemical, ash depollution, Cl-source: e.g., MgCl ₂]
AirPrex® ² [3.1; precipitation/crystallization] Ostara Pearl Reactor® ³ [3.2; crystallization] DHV Crystalactor® ⁴ [3.2; crystallization]	Stuttgart process ⁸ [4.1; wet-chemical leaching] PHOXNAN ⁹ [4.2; wet-oxidation] Aqua Reci® ¹⁰ [4.2; super critical water oxidation]	AshDec® Rhenania ¹³ [5; thermo-chemical, Rhenaniaphosphat, Na ₂ SO ₄] PASCH ¹⁴ [5; acidic wet-chemical, leaching] LEACHPHOS® ¹⁵ [5; acidic wet-chemical, leaching]
P-RoC® ⁵ [3.2; crystallization] PRISA ⁶ [3.2; precipitation/crystallization]	MEPHREC® ¹¹ [4.3; metallurgic melt-gassing]	EcoPhos® ^{16*} [5; acidic wet-chemical, leaching, P-acid production] RecoPhos® ¹⁷ [5; acidic wet-chemical, extraction] Fertilizer Industry ^{18*} [5; acidic wet-chemical, extraction] Thermphos (P ₄) ^{19*,**} [5; thermo-electrical]

Source: L. Egle, H. Rechberger, J. Krampe, M. Zessner 2016: Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment.

PHOSPHORUS RECOVERY - CHALLENGES

- Costs much higher than in traditional usage of sewage sludge in agricultural fields
- Quality of end products:
 - P content varies, low in some methods
 - Hazardous substances: heavy metal contents high when recovering P from ashes, the amount of micropollutants often unknown
 - Plant availability of P may be low in some methods
- Technological maturity: most processes still in piloting phase

THANK YOU!

Marjukka Porvari

Marjukka.porvari(at)jnfoundation.fi
+358-41-549 1535

