Phosphorus recovery in Finland
Case RAVITA
Phosphorus

According to different sources, phosphorus deposits will only last for 40-100 years

Most countries are dependent on imported P

In Central Europe, some WWTPs are required to recover P
 • Germany, Switzerland, Austria

Only large WWTPs currently have potential for P recovery

Cost of recovered P is not competitive to synthetic fertilizers
Nitrogen

No lack of raw material in the future

• 78% of the atmosphere is N2

However, the manufacturing of N fertilizers is energy intensive

• Around 1-2% of the world's annual energy supply is consumed in the Haber-Bosch process

Reject water from anaerobic digestion has high concentrations of ammonia, which is usually considered a problem

→ Increases N load at WWTP
→ Increases energy consumption in aeration
Wastewater treatment in Finland

- There are 350 WWTPs (>100 PE)
 - Only 17 larger WWTPs (>100 000 PE)

- Phosphorus removed chemically by co-precipitation

- Sludge treatment
 - Digestion (2/3 of sludge)
 - Composting
 - Thermal drying, chemical treatment

- No recovery of phosphorus or nitrogen, no incineration of sludge
Possible sources of P in wastewater treatment plants

- Sludge ash
- Sludge liquor
- Water phase
Phosphorus recovery

• Present phosphorus recovery technologies are based either on:
 – Biological phosphorus removal and digestion
 or
 – Sludge incineration
• Suitable only for large WWTPs
• Cost of the recovered P is not competitive
Nitrogen recovery

- Present nitrogen recovery technologies are mainly based on ammonia stripping from reject water
- Sludge treatment by digestion is required
- Stripping requires high pH and/or high temperature
Nutrient recovery potential in Finland

- Present technologies are very poorly applicable for Finland
 - Would require either sludge incineration or biological P removal

- Recovery potential meets only large WWTPs, which have nutrient removal as well as special process combinations

- Cost of the primary raw materials for nutrient manufacturing are still low
Nutrient recovery potential at Finnish WWTPs

HSY catchment area

- Phosphorus ca. 700 t/a
 (Viikinmäki 530 t/a)
- Nitrogen ca. 600 t/a
 (Viikinmäki 400 t/a)

Finland

- Phosphorus ca. 4 000 t/a
- Nitrogen ca. 1 000 t/a (calculated based on digested sludge)
Future technology needs in Finland

• Nutrient recovery technologies need to be suitable for:
 – WWTPs with chemical precipitation for P removal
 – WWTPs without digestion
 – Nutrient harvesting
 – Also for plants without any nutrient removal

• Needs to be size neutral
RAVITA innovation

• No need for Bio-P, sludge incineration or digestion
• Fits all kinds of WWTPs
• Size neutral
• Maximizes phosphorus recovery
• Nutrients are not integrated into the sludge
• Enables nutrient harvesting
• Enables circulation of precipitation chemical
RAVITA Recovery Process

- Post-precipitation of phosphorus with metal salt
- Separation of precipitate
- Chemical recovery and separation step
- Re-use of precipitation chemical
- Phosphorus acid as final product
RAVITA Phosphorus Recovery Ideology

Effluent wastewater

Phosphorus Post-Pretreatment and Separation

Dissolution Step

Chemical sludge

Recovery of Phosphorus Separation Step

Phosphoric Acid

Precipitation chemical Recirculation

Phosphoric Acid Recirculation

Surplus Phosphoric Acid

End Product 1

Waste water

Biosludge

Phosphorus Post-Pretreatment and Separation

P 7-15 %
P 73 %
P 100 %
P 55-63 %
P 27 %
RAVITA Combination of phosphorus and nitrogen recovery

Base liquid
Stripper Unit
Ammonia NH₃
Air Washer Unit
Air
Reject water NH₄+

End Product 1
Phosphorus acid from Phosphorus Recovery Unit

End Product 2
Ammonium Phosphate

HSY
RAVITA Pros & Cons

+ No need for Bio-P, sludge incineration or digestion
+ Fits all kinds of WWTPs
+ Size neutral
+ Maximizes phosphorus recovery
+ Nutrients are not integrated to the sludge
+ Enables nutrient harvesting
+ Enables precipitation chemical circulation

- Post-precipitation of phosphorus increases the risk of P release due to tertiary process phase
- New innovation requires still piloting and testing
- Pilot size: 1 000 P.E.
- Flow rate: 7.5 m³/h
- Coagulation, flocculation
- Separation by Hydrotech disc filter
• Research work: Jyväskylä University
• Development work: HSY
• Main tasks:
 – Chemical sludge production
 – Optimization of the production and separation
 – Chemical sludge processing:
 – Dilution and separation process optimization
 – Technical options evaluation
• Future tasks:
 – Prototype for chemical sludge processing
 – Co-operation with Aalto university related NP Harvest
Research on RAVITA process

Post-precipitation
- Separation
- Drying

Viikinmäki WWTP 1000 PE pilot plant

- Chemical concentrations
- Retention time
- Sludge circulation
- Mixing intensity

- >80% of phosphorus removed
- Floc formation
- 85 g P/SS
- Drying is challenging

Dissolution

University of Jyväskylä Laboratory scale

- Acid type
- Acid volume
- Acid concentration
- Temperature
- Dissolution time
- Number of steps
- Sludge age

- 95 % of phosphorus can be dissolved
- 99 % of aluminium can be dissolved

Separation & Recovery

- (Solvent extraction)

- Solvent type
- Solvent concentration
- A/O ratio
- Organic phase/Al ratio
- Number of extraction step

- 97 % of aluminium can be transferred back to organic phase
- Fe is being researched
Effect of coagulation chemical

Effect of Polymer

Effect of sludge circulation

Settled sludge SS concentration

Optimization of coagulation
Hazardous substances in RAVITA

- Hazardous substances are one of the main concerns in recycling nutrients from municipal wastewater
- RAVITA contains less hazardous substances than sludge
- Main part of the micropollutants are already biologically degraded or attached to the sludge before RAVITA’s post-precipitation step
- Post-precipitation does not precipitate those substances, but some attach to the chemical sludge
- More research still needs to be done
Heavy metals and organic micropollutants were analysed

Heavy metal conc. low

Only BDE and Alkylphenols were detected
 - Concentrations are low

More research is needed to ensure low concentrations

<table>
<thead>
<tr>
<th>Results</th>
<th>RAVITA</th>
<th>Sweden</th>
<th>Norway</th>
<th>Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polybrominated diphenylethers</td>
<td></td>
<td>ng/kg k.a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tetraBDE#47</td>
<td>550</td>
<td>N.A</td>
<td>N.A</td>
<td>N.A</td>
</tr>
<tr>
<td>PentaBDE#99</td>
<td>540</td>
<td>50 000</td>
<td>25 000</td>
<td>16 000</td>
</tr>
<tr>
<td>DecaBDE#209</td>
<td>8 400</td>
<td>300 000</td>
<td>400 000</td>
<td>490 000</td>
</tr>
<tr>
<td>Alkylphenols</td>
<td></td>
<td>mg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(meta+para)-cresol</td>
<td>8,9</td>
<td>N.A</td>
<td>N.A</td>
<td>28</td>
</tr>
</tbody>
</table>
Heavy metals in RAVITA sludge

![Graph showing heavy metal concentrations in RAVITA sludge and Viikinmäki WWTP sludge compared to legislative limits.](image-url)
TECHNICAL steps
• RAVITA DEMO plant
 – Increase of technology readiness level (TRL), now 5-6
 – Dissolution and separation of RAVITA sludge into the DEMO scale
• Energy and mass balances
• More analyses of the end product quality
 – Hazardous substances and microplastics

BUSINESS steps
• Ecosystem mining for potential partners (out of the box) and clients
• End users ideas and comments needed to complete the business concept
THANK YOU!

The RAVITA project has been granted funding from the Finnish Ministry of the Environment RAKI Programme.

The RAKI RAVITA DEMO plant has been chosen as a part of the Government’s key project on the circular economy.

RAVITA was one of the winners in BONUS return competition 2018.