Removal of hazardous substances from industrial waste waters

Alar Saluste & Ab Doets BEST conference - Toila, Estonia 21 November 2018

FLUOR

Conference & presentation topic

Company overview & presenter background

Overview of the hazardous substances - Ab Doets

- Estonian discharge limits compared to other countries
- Industry behaviour & applied techniques
- Toxic substances heavy metals & organic substances
- Impact toxic substances on (municipal) waste water treatment plants

³ Agenda

FLUOR

Removal methods – Alar Saluste

- Inorganic hazardous substances
- Organic hazardous substances

Conclusions

Conference & presentation topic

BEST project – **Better Efficiency for industrial** Sewage Treatment

Todays presentation subject is about:

- Estonian discharge limits compared to other countries
- Normal applied waste water treatment techniques
- Toxic substances in waste water

Companies overview

Fluor / Aqua Consult Baltic

Fluor company overview

6

- One of the world's leading publicly traded engineering, procurement, construction, maintenance, and project management companies
- Over 1,000 projects annually, serving more than 600 clients in 66 different countries
- More than 45,000 global employees
- Offices in 28 countries on 6 continent
- More than 100 years of experience
 FLUOR.

Fluor offices worldwide

America's

Aliso Viejo, California Anchorage, Alaska Arlington, Virginia Austin, Texas Baton Rouge, Louisiana Buenos Aires, Argentina Calgary, Alberta, Canada Caracas, Venezuela Charlotte, North Carolina Clarksville, Tennessee Dallas, Texas Gardena, California Greenville, South Carolina Houston, Texas

Lima, Peru Long Beach, California Mexico City, Mexico Pittsburgh, Pennsylvania Port of Spain, Trinidad Richland, Washington San Francisco, California San Juan, Puerto Rico Santiago, Chile Vancouver, B.C., Canada Washington, D.C.

EAME

Abu Dhabi, U.A.E. London, England Ahmadi, Kuwait Madrid, Spain Al Khobar, Saudi Arabia Moscow, Russia Antwerp, Belgium Rotterdam. The Asturias, Spain Netherlands Bergen-op-Zoom, The Netherlands Tarragona, Spain Farnborough, England Dublin, Ireland Gliwice, Poland Amsterdam. The Netherlands Johannesburg, South Africa

Asia/Australia

Beijing, China Brisbane, Australia Jakarta, Indonesia Manila, Philippines Melbourne, Australia New Delhi, India Perth, Australia Seoul, South Korea Shanghai, China Singapore Tokyo, Japan

r	Years of Experience in Region							
North America	South America	Europe	Africa	Middle East	Asia	Australia		
98	73	62	50	63	59	60		

Fluor capabilities

Pre-Design

٠	Com	puter	Mod	leling

- Conceptual Design
- Estimating
- Feasibility Studies
- Permitting
- Project Financing
- Scope Definition
- Siting
- Technology/ License Evaluation

- Front-end Engineering
- Detailed Engineering

Design

- Cost Control
- Planning & Scheduling
- Sourcing& Supply
- Systems Integration
- Safety Planning

 Construction Management

Construction

- Craft Staffing & Training
- Equipment & Tools Supply
- Field Mobilization
- Material Control
- Quality Control
- Safety Programs
- Contractor Management

- Commissioning
- Engineering Support

Start-Up

- Precommissioning
- Systems Checkout
- Initial Production
- Plant Readiness
- Turnover

 Asset Performance Improvement

Operations &

Maintenance

- Facility Management
- Plant Operations & Maintenance
- Small/Sustaining Capital Projects
- Turnaround, Outages & Shutdowns

Solutions

Aqua Consult Baltic company overview

¹⁰ Aqua Consult Baltic company overview

aqua consult Ingenieur GmbH

Since 1978

Hannover, Germany

40 employees

Over 1000 completed projects

Testing Facilities in Hannover University

aqua consult Baltic OÜ

Since 1997

Tartu, Estonia

12 employees

Over 300 completed projects

Testing facilities in University of Tartu

Aqua Consult Baltic company overview

Technology Neutral Engineering & Consultancy Company

lunicipal Wastewater treatment plants 1000 – 500 000 PE Secondary waste handling

Industrial Wastewater treatment plants

- Oil and Ga
- Chemical
- Food & Agriculture

Raw and Process water treatment plants

- Drinking wate
- Process wate
- Utility water

New Technology development • Biological carbon treatment • Nitrogen removal

¹² Aqua Consult Baltic company overview

Engineering

- Process engineering
- Detailed engineering

Consultancy

- Conceptual studies
- Feasibility studies

Procurement

- Tender documents preparation
- Technical evaluation of tenders

¹³ Aqua Consult Baltic company overview

In the laboratory

- Technology development
- Physical separation tests (oil & grease, solids, sludge)
- Flotation tests

On site

- Sampling and measuring on site
- Pilot plant testing
- Optimization During Start-up

Trainings for WWTP operators

Presenter background

Alar Saluste and Ab Doets

¹⁵ Presenter background Ab Doets

- 1977 Graduated in chemical engineering from TU Delft the Netherlands
- 1977 1980 Drinking water company of Amsterdam
- ▶ 1980 1985 Pielkenrood / 1985 1994 Meyn Water Treatment
 - Selling, design and engineering, installation, start up, trouble shooting, guarantee test runs in the oil and food industry.
 - Gravity oil separators, dissolved air flotation units with or without chemical dosing, aerated biological treatment systems (continuous and SBR type), biological sludge & flotation dewatering by means of belt presses, chamber filter presses and centrifuges
- > 1994 2004 ABB Lummus Global / 2004 present Fluor
 - Engineering, commissioning & start up and guarantee test runs for waste water treatment systems, cooling water systems, drainage and effluent collection in the oil industry

¹⁶ Presenter background Alar Saluste

- Experience
 - 2011 University of Tartu Environmental Technology waste water treatment
 - Main focus on biological nitrogen removal
 - 2013-2015 Eesti Energia AS principle wwt specialist @development department
 - Research and development of waste treatment technology for oil shale treatment processes.
 - 2010-2013 Aqua Consult Baltic specialist /2015- 2016 FLUOR B.V Process and speciality engineer/2016 - ... Aqua Consult Baltic - Project manager
 - Consulting, engineering, commissioning & start up and guarantee test runs for waste water treatment systems, cooling water systems, drainage and effluent collection for industrial waste water treatment systems

¹⁷ Presenter background Alar Saluste

Experience in the industries

- Food and beverage
- Oil&Gas
- Petrochemical (including oil shale and chemical
- Dairy

FLUOR

Municipal WWT

Overview of hazardous substances

Heavy metals

Organic substances

¹⁹ Heavy metals and their discharge limits

- Most of the environmental standards show discharge limits for the following heavy metals:
- In alphabetical order: Aluminum, Arsenic, Barium, Cadmium, Chrome 3⁺, Chrome 6⁺, Cobalt, Copper, Iron, Lead, Manganese, Mercury, Molybdenum, Nickel, Tin and or Zinc
- For the more toxic heavy metals like Cadmium, Chrome 3⁺, Chrome 6⁺, Mercury the discharge limits are in the order of ppb's.
- For the remaining heavy metals the discharge limits are less stringent

Heavy metal discharge limits in ppb for different legislations

Parameters	Estonia	European Parliament	Kuwait	Qatar Ras Laffan Ind City	Saudi Arabia Royal Commission
Aluminium - Al	-	-	5000	5000	15000
Arsenic - As	10	-	100	100	100
Barium - Ba	100	-	2000	2000	1000
Boron - Bo	-	-	750	1500	-
Cadmium - Ca	5	0.5 -1.5	10	10	10
Chromium - Cr	50	-	200	10	50
Cobalt - Co	-	-	200	50	100
Copper - Cu	15	-	200	200	200
Iron - Fe	-	-	5000	1000	5000
Lead - Pb	14	14	500	100	100

20

Heavy metal discharge limits in ppb for different legislations

Parameters	Estonia	European Parliament	Kuwait	Qatar Ras Laffan Ind City	Saudi Arabia Royal Commission
Manganese - Mn	-	-	200	50	200
Mercury - Hg	1	0.07	1	1	1
Molybdenum - Mo	-	-	10	-	-
Nickel - Ni	34	34	200	200	200
Selenium -Se	-	-	-	-	-
Silver - Ag	-	-	100	-	-
Tin - Sn	3	-	-	-	-
Vanadium - Va	-	-	100	-	-
Zinc -Zn	50	-	2000	500	2000

21

Heavy metal discharge limits in ppb for different legislations

The USA EPA Effluent Guideline regulations are specified completely different:

Specified for 60 industries with more than 450 sub categories

22

- The maximum allowed contamination levels of waste water for discharge into surface water varies by industry
- The standards are technology-based, i.e. they are based on the performance of treatment and control technologies, like Best Available Technology (BAT)
- Effluent Guidelines are not based on risk or impacts of pollutants upon receiving waters

²³ Organic substances

- European and Estonian regulations show discharge limits for the following types of organic substances:
- Chlorinated straight chain components, like trichloromethane , 1,2 dichloromethane, 1,2 dichloroethane, hexachlorobutadiene ,
- Chlorinated one aromatic ring components like benzene, diethylhexyl-phthalate (DEHP), diuron, hexachlorocyclohexane, hexachlorobenzene, nonylphenol, pentachlorobenzene, pentachlorophenol, trichlorobenzenes
- Two or more aromatic ring components without chloro like anthracene, fluoranthene, naphtalene
- Two or more aromatic ring structures components with chloro, sulphur and or oxygen, like cyclodiene pesticides (aldrin, dieldrin, endrin, isodrin), endosulfan, heptachlor and heptachlorepoxide, trifluralen

Organic substances discharge limits in ppb (monthly or annual averages) for different legislations

24

Parameters	Estonia	European Parliament	Kuwait	Qatar Ras Laffan Ind City	Saudi Arabia Royal Commission
O&G (hexane extractable)	-	-	10,000	10,000	8,000
Chlorinated HC	Individual components	Individual components	-	-	100
РАН	Individual components	Individual components	-	-	10 (max allowable)
Phenols	-	-	1,000 total recoverable	500	100
Individual chlorinated straight chains components	2.5/20/10/-	2.5/20/10/ MAC 0.6	-	-	Sum for all chlorinated HC

Organic substances discharge limits in ppb (monthly or annual averages) for different legislations

Parameters	Estonia	European Parliament	Kuwait	Qatar Ras Laffan Ind City	Saudi Arabia Royal Commission
Individual chorinated 1 ring components	50/-/1.8/-/ 0.05/lim/lim/ 1/0.4	8/1.3/0.2/0.002/ 0.05 MAC/0.3/0.007/ 0.4/0.4	-	-	Sum for all chlorinated HC
Individual 2 or more aromatic ring compo- nents without chloro	0.1/120/130	0.1/0.006/2	-	-	-
Individual two or more aromatic ring components with chloro, sulphur and or oxygen	sum 0.01/lim/ /0.03/lim	sum0.005/0.0005/ /1 x 10 exp-8/0.03	-	-	-

FLUOR

25

²⁶ Conclusions organic substances discharge limits

- Middle East countries have only discharge limits for groups of organic component like Chlorinated hydrocarbons, Polycyclic aromatic hydro carbons and phenols.
- European Parliament and Estonia have discharge limits for individual organic components.
- European Parliament discharge limits are for nearly all individual components more stringent compared to the Estonian discharge limits.

Impact toxic substances

On (municipal) waste water treatment plants

²⁸ Heavy metals impact on (municipal) wwtp's

- Overloading a biological treatment system with heavy metals will have toxic effects on bacteria and other micro organisms
- However micro organisms in biological treatment systems are able within limits to adapt to elevated heavy metal concentrations
- Accumulation of heavy metals like Mn and Cu takes place in the collected sludge's (primary and secondary)
- Heavy metals like Cd, Cr, Pb, Fe, Ni, Zn remains for approx 50 % in the biologically treated effluent.
- Heavy metal concentrations of final effluent of a Middle East refinery: Ni 12ppb, Mo < 1pp and Va 8ppm (analyzing method atomic absorption spectrometry)

²⁹ Organic substances impact on (municipal) wwtp's

- Handbooks like:
 - Pitter & Chudoba Biodegradibility of organic substances in aquatic environment
 - Karel Verschueren Handbook of Environmental data on Organic Chemicals provide for individual and groups of organic components all kind of data like:
 BOD₅, COD, TOC, ThOD
 - Biodegradation in % removal in waste water unit systems (BOD₅ / ThOD ratio)
 - Biological effects, like inhibition of cell multiplication of bacteria and algae, LC_{50} and LD_{50} concentrations, uptake in species and foodplants

Conclusion:

The organic substances as mentioned in the Estonian and European Parliament legislations have biological effects as mentioned above

³⁰ Manmade sources of organic substances

- Examples from where toxic organic substances can originate from:
 - \$1,2 dichloroethane vinyl chloride mfg./tobacco flavoring/metal degreaser
 - \$1,2 dichloromethane aerosols/refrigerant/leather& textile coating/degreasing
 - DEHP plastic mfg., recycling and processing
 - Anthracene, benzene gasoline/diesel/coal/bitumen
 - Naphthalene, Fluoranthene petroleum refining/coal tar distillation/crude oils (Kuwait/Louisiana)/solvents/lubricants
 - Endosulfan, diuron, hexachlorobenzene, hexachlorocyclohexane insecticides/herbicides/pesticides/wood preservatives/electrolytic chlorine production
 - Trichlorobenzenes synthetic transformer oils/heat transfer medium/pesticides/ insecticides

³¹ Analyzing methods

FLUOR

For determination of heavy metal in waste water in the order of magnitude of ppb's, detection methods like:

Flame atomic absorption are required.

For determination of organic substances in waste water in the order of magnitude of ppb's, detection methods like:

Gas Chromatography – Flame ionization detection with calibration curves are required.

- Specialized laboratory's are necessary
- Results will be available time delayed

Removal of hazardous inorganic substances (heavy metals) from waste water

Manipulation of the specific conditions of the waste water

Chemical or physical precipitation

- Coagulants (Ferric salts FeCl₃/Fe₂(SO₄)₃/FeClSO₄, Aluminium salts AlCl₃/ Al₂(SO₄)₃, cationic organic coagulants, etc.)
- Adjusting pH (solubility of the hydroxide salts of the components changes)
- Temperature (solubility of the components rises with temperature)
- Electrochemical manipulation

Separation of the precipitate

Sedimentation

Flotation

Separation of the precipitate

Sedimentation

Settling tank or column

Very heavy precipitate

Lamella separator

• More surface area to volume

API; CPI; TPI

Surface or bottom sludge

Flotation

Diffused air flotation

Micro bubble

Induced air flotation

Pressurised system

Gas flotation

Coarse bubble

FLUOR_®

40 Removal of water by means of physical separation

Distillation

Vacuum

•Temp lower than 100 degrees C •Lower risk of carbon "cooking"

ATM

•In case all compounds are boiling lower than 100 degrees C

Pressure

•Keeps volatile components in liquid from

Filtration

Removal of hazardous inorganic substances (heavy metals) from waste water

Technology selection

Always look at the individual waste streams at the source to understand what is in the waste water

Bleed lines of vessels and tanks

Processes including distillation or separation of water

43 Technology selection

Flow versus Concentration of Hazardous substances

Low flow high conc. - Manipulation of the specific conditions of water

• Treatment at the SOURCE of the contamination

High Flow low conc.- physical removal of water

Concentration of organic compounds

Complex formulation

45 Technology selection

Pilot Testing

On site pilot testing

Laboratory

FLUOR_®

Removal of hazardous organic substances from waste water

⁴⁹ Manipulation of the specific conditions of water

Chemical or physical co-precipitation

- Coagulants (Ferric salts FeCl₃/Fe₂(SO₄)₃/FeClSO₄, Aluminium salts AlCl₃/ Al₂(SO₄)₃, cationic organic coagulants, etc.)
- Adjusting pH (solubility of the hydroxide salts of the components changes)
- Temperature (solubility of the components rises with temperature)
- Electrochemical manipulation

Separation of the precipitate

Sedimentation

Flotation

⁵¹ Manipulation of the specific conditions of water

Stripping technology

Air striping

Fuel gas stripping

Steam striping

⁵² Removal of water by means of physical separation

⁵⁴ Removal of water by means of physical separation

Distillation

Vacuum

•Temp lower than 100 degrees C •Lower risk of carbon "cooking"

ATM

•In case all compounds are boiling lower than 100 degrees C

Pressure

•Keeps volatile components in liquid from

Filtration

55 Destructive methods

56 Destructive methods

Low temperature

High temperature

agua consult

baltic Ol

FLUOR_®

HA2018Al-001.pptx

57 Destructive methods

Removal of hazardous organic substances from waste water

Technology selection

⁵⁹ Technology selection

Always look at the individual waste streams at the source to understand what is in the waste water

Bleed lines of vessels and tanks

Processes including distillation

Processes surrounding high temperatures

Technology selection

Soluble vs insoluble hazardous organic compounds

insoluble hazardous organic compounds - manipulation of the specific conditions of water

Soluble - physical removal of water or destructive methods

⁶¹ Technology selection

Low Concentration of soluble organic compounds vs high concentration

Large amount of other organic compounds – wet air oxidation

Low organic compounds concentration – physical removal of water

Conclusions

64 Conclusions

Legislation for heavy metals and toxic organic substances is in place for many countries but differ from each other.

Many industries will have heavy metals and toxic organic substances in their waste water.

Industry will only implement new treatment schemes for removal of heavy metals and toxic organic substances if forced by authorities and or the receiving waste water treatment plants.

Results of heavy metals and toxic organic substances analyses are only available after the treated waste water is already discharged.

65 Conclusions

Removal of hazardous substances is more difficult in mixed waste water streams. If possible removal should be done at the source

There are various technological solutions for removal of the substances Selection must be done based on the specific waste water

In order to check the technological and financial feasibility pilot testing should be done before implementation

Contact Details

Alar Salust Project Manage	e OÜ aqua consult Baltic r Tel: +372 55 515 806 - Alar@aquaconsult.ee
Ab Doet Principal technical specialis	 Fluor B.V. Amsterdam Tel: +31 (0)23 543 2729 - ab.doets@fluor.com
FLUOR。	aqua consult baltic 00 HA2018AI-001.pptx